词汇表
AI 代理#
¥AI agent
AI 代理是能够响应请求、做出决策并为用户执行实际任务的人工智能系统。它们使用大型语言模型 (LLM) 来解读用户输入,并利用现有信息和资源,做出最佳的请求处理决策。
¥AI agents are artificial intelligence systems capable of responding to requests, making decisions, and performing real-world tasks for users. They use large language models (LLMs) to interpret user input and make decisions about how to best process requests using the information and resources they have available.
AI 链#
¥AI chain
AI 链允许你通过一系列组件调用与大型语言模型 (LLM) 和其他资源进行交互。n8n 中的 AI 链不使用持久内存,因此你无法使用它们来引用先前的上下文(请使用 AI 代理来实现此功能)。
¥AI chains allow you to interact with large language models (LLMs) and other resources in sequences of calls to components. AI chains in n8n don't use persistent memory, so you can't use them to reference previous context (use AI agents for this).
AI 补全#
¥AI completion
完成的答案是由 GPT 等模型生成的。
¥Completions are the responses generated by a model like GPT.
AI 嵌入#
¥AI embedding
嵌入是使用向量对数据进行数值表示。人工智能使用它们来解释复杂的数据和关系,方法是在多个维度上映射值。向量数据库,或称向量存储,是用于存储和访问嵌入的数据库。
¥Embeddings are numerical representations of data using vectors. They're used by AI to interpret complex data and relationships by mapping values across many dimensions. Vector databases, or vector stores, are databases designed to store and access embeddings.
AI 接地性#
¥AI groundedness
在 AI 中,尤其是在检索增强生成 (RAG) 的上下文中,接地性和非接地性衡量的是模型响应与源信息吻合的准确程度。该模型使用其源文档生成有依据的回复,而无依据的回复则包含未经这些源文档支持的推测或臆想。
¥In AI, and specifically in retrieval-augmented generation (RAG) contexts, groundedness and ungroundedness are measures of how much a model's responses accurately reflect source information. The model uses its source documents to generate grounded responses, while ungrounded responses involve speculation or hallucination unsupported by those same sources.
AI 幻觉#
¥AI hallucination
人工智能中的幻觉是指大型语言模型 (LLM) 错误地感知到不存在的模式或对象。
¥Hallucination in AI is when an LLM (large language model) mistakenly perceives patterns or objects that don't exist.
AI 重排序#
¥AI reranking
重新排序是一种优化候选文档列表顺序以提高搜索结果相关性的技术。检索增强生成 (RAG) 和其他应用使用重排序来优先处理与生成或下游任务最相关的信息。
¥Reranking is a technique that refines the order of a list of candidate documents to improve the relevance of search results. Retrieval-Augmented Generation (RAG) and other applications use reranking to prioritize the most relevant information for generation or downstream tasks.
AI 记忆#
¥AI memory
在 AI 环境中,内存允许 AI 工具在交互过程中持久化消息上下文。此功能允许你与 AI 代理进行持续对话,例如,无需在每条消息中提交持续的上下文信息。在 n8n 中,AI 代理节点可以使用内存,但 AI 链不能。
¥In an AI context, memory allows AI tools to persist message context across interactions. This allows you to have a continuing conversations with AI agents, for example, without submitting ongoing context with each message. In n8n, AI agent nodes can use memory, but AI chains can't.
AI 检索增强生成 (RAG)#
¥AI retrieval-augmented generation (RAG)
检索增强生成 (RAG) 是一种使 LLM 能够访问来自外部来源的新信息以改进 AI 响应的技术。RAG 系统检索相关文档,以最新的、特定字段的或专有的知识为基础,补充其原始训练数据。RAG 系统通常依赖向量存储来高效地管理和搜索这些外部数据。
¥Retrieval-augmented generation, or RAG, is a technique for providing LLMs access to new information from external sources to improve AI responses. RAG systems retrieve relevant documents to ground responses in up-to-date, domain-specific, or proprietary knowledge to supplement their original training data. RAG systems often rely on vector stores to manage and search this external data efficiently.
AI 工具#
¥AI tool
在 AI 环境中,工具是指 AI 在响应请求时可以引用以获取特定信息或功能的附加资源。人工智能模型可以使用工具与外部系统交互或完成特定的、聚焦的任务。
¥In an AI context, a tool is an add-on resource that the AI can refer to for specific information or functionality when responding to a request. The AI model can use a tool to interact with external systems or complete specific, focused tasks.
AI 向量存储#
¥AI vector store
向量存储,或称向量数据库,用于存储信息的数学表示。与嵌入和检索器一起使用,创建 AI 在回答问题时可以访问的数据库。
¥A vector store, or vector database, stores mathematical representations of information. Use with embeddings and retrievers to create a database that your AI can access when answering questions.
API#
API,即应用编程接口,提供对服务数据和功能的编程访问。API 使软件更容易与外部系统交互。它们通常作为传统用户界面(通过网页浏览器或用户界面访问)的替代方案。
¥APIs, or application programming interfaces, offer programmatic access to a service's data and functionality. APIs make it easier for software to interact with external systems. They're often offered as an alternative to traditional user-focused interfaces accessed through web browsers or UI.
canvas (n8n)#
画布是 n8n 编辑器 UI 中构建工作流的主要界面。你使用画布添加和连接节点来构建工作流。
¥The canvas is the main interface for building workflows in n8n's editor UI. You use the canvas to add and connect nodes to compose workflows.
集群节点 (n8n)#
¥cluster node (n8n)
在 n8n 中,集群节点是一组协同工作的节点,用于在工作流中提供功能。它们由一个根节点和一个或多个子节点组成,这些子节点扩展了根节点的功能。
¥In n8n, cluster nodes are groups of nodes that work together to provide functionality in a workflow. They consist of a root node and one or more sub nodes that extend the node's functionality.
凭证 (n8n)#
¥credential (n8n)
在 n8n 中,凭据存储用于连接特定应用和服务的身份验证信息。使用你的身份验证信息(用户名和密码、API 密钥、OAuth 密钥等)创建凭证后,你可以使用关联的应用节点与服务进行交互。
¥In n8n, credentials store authentication information to connect with specific apps and services. After creating credentials with your authentication information (username and password, API key, OAuth secrets, etc.), you can use the associated app node to interact with the service.
数据固定 (n8n)#
¥data pinning (n8n)
数据锁定允许你在工作流开发期间临时冻结节点的输出数据。这使得你可以开发具有可预测数据的工作流,而无需重复向外部服务发出请求。生产工作流会忽略已固定的数据,并在每次执行时请求新数据。
¥Data pinning allows you to temporarily freeze the output data of a node during workflow development. This allows you to develop workflows with predictable data without making repeated requests to external services. Production workflows ignore pinned data and request new data on each execution.
编辑器 (n8n)#
¥editor (n8n)
n8n 编辑器 UI 允许你创建和管理工作流。主要区域是画布,你可以在其中通过添加、配置和连接节点来构建工作流。侧边栏和顶部面板允许你访问 UI 的其他区域,例如凭据、模板、变量、执行等。
¥The n8n editor UI allows you to create and manage workflows. The main area is the canvas, where you can compose workflows by adding, configuring, and connecting nodes. The side and top panels allow you to access other areas of the UI like credentials, templates, variables, executions, and more.
授权 (n8n)#
¥entitlement (n8n)
在 n8n 中,授权授予 n8n 实例在特定时间内访问计划限制功能的权限。
¥In n8n, entitlements grant n8n instances access to plan-restricted features for a specific period of time.
浮动授权是一组授权,你可以将其分配给不同的 n8n 实例。你可以重新分配浮动权限,将其访问权限转移到不同的 n8n 实例。
¥Floating entitlements are a pool of entitlements that you can distribute among various n8n instances. You can re-assign a floating entitlement to transfer its access to a different n8n instance.
评估 (n8n)#
¥evaluation (n8n)
在 n8n 中,评估功能允许你标记和整理执行历史记录,并将其与新的执行进行比较。你可以使用此方法了解工作流在你进行更改后的性能随时间的变化情况。尤其是在开发以人工智能为中心的工作流程时,此功能非常有用。
¥In n8n, evaluation allows you to tag and organize execution history and compare it against new executions. You can use this to understand how your workflow performs over time as you make changes. In particular, this is useful while developing AI-centered workflows.
表达式 (n8n)#
¥expression (n8n)
在 n8n 中,表达式允许你通过执行 JavaScript 代码动态填充节点参数。除了提供静态值之外,你还可以使用 n8n 表达式语法,利用来自先前节点、其他工作流或你的 n8n 环境的数据来定义值。
¥In n8n, expressions allow you to populate node parameters dynamically by executing JavaScript code. Instead of providing a static value, you can use the n8n expression syntax to define the value using data from previous nodes, other workflows, or your n8n environment.
LangChain#
LangChain 是一个用于处理大型语言模型 (LLM) 的 AI 开发框架。LangChain 提供了一个标准化的系统,用于处理各种模型和其他资源,并将不同的组件连接在一起以构建复杂的应用。
¥LangChain is an AI-development framework used to work with large language models (LLMs). LangChain provides a standardized system for working with a wide variety of models and other resources and linking different components together to build complex applications.
大型语言模型 (LLM)#
¥Large language model (LLM)
大型语言模型 (LLM) 是一种人工智能机器学习模型,旨在出色地完成自然语言处理 (NLP) 任务。它们通过训练大量数据来构建语言和其他数据的概率模型。
¥Large language models, or LLMs, are AI machine learning models designed to excel in natural language processing (NLP) tasks. They're built by training on large amounts of data to develop probabilistic models of language and other data.
节点 (n8n)#
¥node (n8n)
在 n8n 中,节点是你用于创建工作流的各个组件。节点定义工作流的运行时间,允许你获取、发送和处理数据,定义流程控制逻辑,并连接到外部服务。
¥In n8n, nodes are individual components that you compose to create workflows. Nodes define when the workflow should run, allow you to fetch, send, and process data, can define flow control logic, and connect with external services.
项目 (n8n)#
¥project (n8n)
n8n 项目允许你将工作流、变量和凭据分离到不同的组中,以便于管理。项目功能通过共享和隔离相关资源,使团队协作更加便捷。
¥n8n projects allow you to separate workflows, variables, and credentials into separate groups for easier management. Projects make it easier for teams to collaborate by sharing and compartmentalizing related resources.
根节点 (n8n)#
¥root node (n8n)
每个 n8n 集群节点都包含一个根节点,用于定义集群的主要功能。一个或多个子节点附加到根节点以扩展其功能。
¥Each n8n cluster node contains a single root nodes that defines the main functionality of the cluster. One or more sub nodes attach to the root node to extend its functionality.
子节点 (n8n)#
¥sub node (n8n)
n8n 集群节点由一个或多个连接到根节点的子节点组成。子节点扩展了根节点的功能,提供对特定服务或资源的访问,或提供特定类型的专用处理,例如计算器功能。
¥n8n cluster nodes consist of one or more sub nodes connected to a root node. Sub nodes extend the functionality of the root node, providing access to specific services or resources or offering specific types of dedicated processing, like calculator functionality, for example.
模板 (n8n)#
¥template (n8n)
n8n 模板是由 n8n 和社区成员共同设计的预构建工作流,你可以将其导入到你的 n8n 实例中。使用模板时,可能需要填写凭据并调整配置以满足你的需求。
¥n8n templates are pre-built workflows designed by n8n and community members that you can import into your n8n instance. When using templates, you may need to fill in credentials and adjust the configuration to suit your needs.
触发节点 (n8n)#
¥trigger node (n8n)
触发节点是一种特殊节点,负责根据特定条件执行工作流。所有生产工作流至少需要一个触发器来确定工作流的运行时间。
¥A trigger node is a special node responsible for executing the workflow in response to certain conditions. All production workflows need at least one trigger to determine when the workflow should run.
工作流 (n8n)#
¥workflow (n8n)
n8n 工作流是一组用于自动化流程的节点集合。工作流在触发条件发生时开始执行,并按顺序执行以完成复杂任务。
¥An n8n workflow is a collection of nodes that automate a process. Workflows begin execution when a trigger condition occurs and execute sequentially to achieve complex tasks.