Pinecone 矢量存储节点#
¥Pinecone Vector Store node
使用 Pinecone 节点可作为 矢量商店 与你的 Pinecone 数据库进行交互。你可以将文档插入向量数据库,从向量数据库获取文档,检索文档并将其提供给连接到 chain 的检索器,或者直接将其连接到 agent 以用作 tool。你还可以通过 ID 更新矢量数据库中的项目。
¥Use the Pinecone node to interact with your Pinecone database as vector store. You can insert documents into a vector database, get documents from a vector database, retrieve documents to provide them to a retriever connected to a chain, or connect directly to an agent as a tool. You can also update an item in a vector database by its ID.
本页提供 Pinecone 节点的节点参数以及更多资源的链接。
¥On this page, you'll find the node parameters for the Pinecone node, and links to more resources.
Parameter resolution in sub-nodes
Sub-nodes behave differently to other nodes when processing multiple items using an expression.
Most nodes, including root nodes, take any number of items as input, process these items, and output the results. You can use expressions to refer to input items, and the node resolves the expression for each item in turn. For example, given an input of five name values, the expression {{ $json.name }} resolves to each name in turn.
In sub-nodes, the expression always resolves to the first item. For example, given an input of five name values, the expression {{ $json.name }} always resolves to the first name.
节点使用模式#
¥Node usage patterns
你可以按照以下模式使用 Pinecone 向量存储节点。
¥You can use the Pinecone Vector Store node in the following patterns.
用作常规节点,用于插入、更新和检索文档#
¥Use as a regular node to insert, update, and retrieve documents
你可以将 Pinecone 向量存储用作常规节点来插入、更新或获取文档。此模式将 Pinecone 向量存储置于常规连接流程中,无需使用代理。
¥You can use the Pinecone Vector Store as a regular node to insert, update, or get documents. This pattern places the Pinecone Vector Store in the regular connection flow without using an agent.
你可以在 此模板 的场景 1 中找到示例。
¥You can see an example of this in scenario 1 of this template.
直接连接到 AI 代理作为工具#
¥Connect directly to an AI agent as a tool
你可以将 Pinecone 向量存储节点直接连接到 AI 代理 的工具连接器,以便在响应查询时使用向量存储作为资源。
¥You can connect the Pinecone Vector Store node directly to the tool connector of an AI agent to use a vector store as a resource when answering queries.
在这里,连接方式如下:AI 代理(工具连接器)-> Pinecone 向量存储节点。
¥Here, the connection would be: AI agent (tools connector) -> Pinecone Vector Store node.
使用检索器获取文档#
¥Use a retriever to fetch documents
你可以将 Vector Store 检索器 节点与 Pinecone 向量存储节点配合使用,从 Pinecone 向量存储节点获取文档。这通常与 Question and Answer 链 节点一起使用,用于从向量存储中获取与给定聊天输入匹配的文档。
¥You can use the Vector Store Retriever node with the Pinecone Vector Store node to fetch documents from the Pinecone Vector Store node. This is often used with the Question and Answer Chain node to fetch documents from the vector store that match the given chat input.
连接流程示例 可以是:问答链(检索器连接器)-> 向量存储检索器(向量存储连接器)-> Pinecone 向量存储。
¥An example of the connection flow would be: Question and Answer Chain (Retriever connector) -> Vector Store Retriever (Vector Store connector) -> Pinecone Vector Store.
使用 Vector Store 问答工具回答问题#
¥Use the Vector Store Question Answer Tool to answer questions
另一种模式使用 Vector Store 问答工具 来汇总来自 Pinecone 向量存储节点的结果并回答问题。此模式并非直接连接 Pinecone 向量存储,而是使用专门用于汇总向量存储中数据的工具。
¥Another pattern uses the Vector Store Question Answer Tool to summarize results and answer questions from the Pinecone Vector Store node. Rather than connecting the Pinecone Vector Store directly as a tool, this pattern uses a tool specifically designed to summarizes data in the vector store.
在这种情况下,连接流程 如下所示:AI 代理(工具连接器)-> 向量存储问答工具(向量存储连接器)-> Pinecone 向量存储。
¥The connections flow in this case would look like this: AI agent (tools connector) -> Vector Store Question Answer Tool (Vector Store connector) -> Pinecone Vector store.
节点参数#
¥Node parameters
操作模式#
¥Operation Mode
This Vector Store node has five modes: Get Many, Insert Documents, Retrieve Documents (As Vector Store for Chain/Tool), Retrieve Documents (As Tool for AI Agent), and Update Documents. The mode you select determines the operations you can perform with the node and what inputs and outputs are available.
Get Many#
In this mode, you can retrieve multiple documents from your vector database by providing a prompt. The prompt will be embedded and used for similarity search. The node will return the documents that are most similar to the prompt with their similarity score. This is useful if you want to retrieve a list of similar documents and pass them to an agent as additional context.
Insert Documents#
Use Insert Documents mode to insert new documents into your vector database.
Retrieve Documents (As Vector Store for Chain/Tool)#
Use Retrieve Documents (As Vector Store for Chain/Tool) mode with a vector-store retriever to retrieve documents from a vector database and provide them to the retriever connected to a chain. In this mode you must connect the node to a retriever node or root node.
Retrieve Documents (As Tool for AI Agent)#
Use Retrieve Documents (As Tool for AI Agent) mode to use the vector store as a tool resource when answering queries. When formulating responses, the agent uses the vector store when the vector store name and description match the question details.
Update Documents#
Use Update Documents mode to update documents in a vector database by ID. Fill in the ID with the ID of the embedding entry to update.
重新排序结果#
¥Rerank Results
Enables reranking. If you enable this option, you must connect a reranking node to the vector store. That node will then rerank the results for queries. You can use this option with the Get Many, Retrieve Documents (As Vector Store for Chain/Tool) and Retrieve Documents (As Tool for AI Agent) modes.
获取多个参数#
¥Get Many parameters
- 松果索引:选择或输入要使用的 Pinecone 索引。
¥Pinecone Index: Select or enter the Pinecone Index to use.
- 提示:输入你的搜索查询。
¥Prompt: Enter your search query.
- 限制:输入要从向量存储中检索的结果数量。例如,将其设置为
10以获取十个最佳结果。
¥Limit: Enter how many results to retrieve from the vector store. For example, set this to 10 to get the ten best results.
插入文档参数#
¥Insert Documents parameters
- 松果索引:选择或输入要使用的 Pinecone 索引。
¥Pinecone Index: Select or enter the Pinecone Index to use.
检索文档(作为链/工具的向量存储)参数#
¥Retrieve Documents (As Vector Store for Chain/Tool) parameters
- 松果索引:选择或输入要使用的 Pinecone 索引。
¥Pinecone Index: Select or enter the Pinecone Index to use.
检索文档(作为工具) (适用于 AI 代理)参数#
¥Retrieve Documents (As Tool for AI Agent) parameters
- 名称:向量存储的名称。
¥Name: The name of the vector store.
- 描述:向 LLM 解释此工具的功能。良好的、具体的描述有助于 LLM 更频繁地生成预期结果。
¥Description: Explain to the LLM what this tool does. A good, specific description allows LLMs to produce expected results more often.
- 松果索引:选择或输入要使用的 Pinecone 索引。
¥Pinecone Index: Select or enter the Pinecone Index to use.
- 限制:输入要从向量存储中检索的结果数量。例如,将其设置为
10以获取十个最佳结果。
¥Limit: Enter how many results to retrieve from the vector store. For example, set this to 10 to get the ten best results.
更新文档的参数#
¥Parameters for Update Documents
- ID
节点选项#
¥Node options
Pinecone 命名空间#
¥Pinecone Namespace
另一种在索引中存储数据的分类选项。
¥Another segregation option for how to store your data within the index.
元数据筛选器#
¥Metadata Filter
Available in Get Many mode. When searching for data, use this to match with metadata associated with the document.
This is an AND query. If you specify more than one metadata filter field, all of them must match.
When inserting data, the metadata is set using the document loader. Refer to Default Data Loader for more information on loading documents.
清除命名空间#
¥Clear Namespace
在“插入文档”模式下可用。在插入新数据之前,删除命名空间中的所有数据。
¥Available in Insert Documents mode. Deletes all data from the namespace before inserting the new data.
模板和示例#
¥Templates and examples
相关资源#
¥Related resources
有关服务的更多信息,请参阅 LangChain 的 Pinecone 文档。
¥Refer to LangChain's Pinecone documentation for more information about the service.
View n8n's Advanced AI documentation.
查找 Pinecone 索引和命名空间#
¥Find your Pinecone index and namespace
你的 Pinecone 索引和命名空间可在你的 Pinecone 账户中找到。
¥Your Pinecone index and namespace are available in your Pinecone account.
