Ollama 模型节点#
¥Ollama Model node
Ollama 模型节点允许你使用本地 Llama 2 模型。
¥The Ollama Model node allows you use local Llama 2 models.
本页提供 Ollama 模型节点的节点参数以及更多资源的链接。
¥On this page, you'll find the node parameters for the Ollama Model node, and links to more resources.
此节点缺少工具支持,因此无法与 AI 代理 节点一起使用。与其将其与 基础 LLM 链 节点连接。
¥This node lacks tools support, so it won't work with the AI Agent node. Instead, connect it with the Basic LLM Chain node.
Parameter resolution in sub-nodes
Sub-nodes behave differently to other nodes when processing multiple items using an expression.
Most nodes, including root nodes, take any number of items as input, process these items, and output the results. You can use expressions to refer to input items, and the node resolves the expression for each item in turn. For example, given an input of five name values, the expression {{ $json.name }} resolves to each name in turn.
In sub-nodes, the expression always resolves to the first item. For example, given an input of five name values, the expression {{ $json.name }} always resolves to the first name.
节点参数#
¥Node parameters
- 模型:选择用于生成补全的模型。选择以下选项:
¥Model: Select the model that generates the completion. Choose from:
-
Llama2
-
Llama2 13B
-
Llama2 70B
-
Llama2 无审查版
¥Llama2 Uncensored
请参阅 Ollama 模型库文档 以获取有关可用型号的更多信息。
¥Refer to the Ollama Models Library documentation for more information about available models.
节点选项#
¥Node options
- 采样温度:使用此选项可控制采样过程的随机性。更高的温度会产生更多样化的采样,但会增加出现幻觉的风险。
¥Sampling Temperature: Use this option to control the randomness of the sampling process. A higher temperature creates more diverse sampling, but increases the risk of hallucinations.
- 顶部 K:输入模型用于生成下一个令牌的令牌选择数。
¥Top K: Enter the number of token choices the model uses to generate the next token.
- 顶部 P:使用此选项可设置完成概率。使用较低的值来忽略可能性较小的选项。
¥Top P: Use this option to set the probability the completion should use. Use a lower value to ignore less probable options.
模板和示例#
¥Templates and examples
相关资源#
¥Related resources
有关服务的更多信息,请参阅 LangChains 的 Ollama 文档。
¥Refer to LangChains's Ollama documentation for more information about the service.
View n8n's Advanced AI documentation.
常见问题#
¥Common issues
有关常见问题或建议的解决方案,请参阅 常见问题。
¥For common questions or issues and suggested solutions, refer to Common issues.
Self-hosted AI Starter Kit#
New to working with AI and using self-hosted n8n? Try n8n's self-hosted AI Starter Kit to get started with a proof-of-concept or demo playground using Ollama, Qdrant, and PostgreSQL.